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Building blocks prepared by transformation of functional
groups in malic acid are of interest for organic synthesis because
of the commercial availability of both enantiomers and relatively
low cost of (S)-malic acid.1 A cyclopropanol approach, involving
cyclopropanation of the ester moiety and subsequent ring cleav-
age, has been widely used in our research group for the synthesis
of naturally occurring and biologically active compounds.2 Re-
cently, we used the cyclopropanation of THP-protected diethyl ma-
late (1) to prepare several useful building blocks.3a One of the
latter, namely, the (S)-form of acetonide 2 (Scheme 1), was applied
in the synthesis of the C13–C21 fragment of epothilones.3b The
enantiomeric purity of the product, determined using Mosher’s
method,4 was more than 99%. The key step of this synthesis was
differentiation between the two cyclopropanol moieties of bis-
cyclopropanol 3 by removal of the THP-group followed by transfor-
mation of triol 4 into isopropylidene acetal 2 (Scheme 1).3 It is
worth noting that, in contrast to the analogous acetalization of bu-
tane-1,2,4-triol (easily available from malic acid) leading to the
corresponding five-membered acetonide,5 acetalization of triol 4
gave a mixture of products 2 and 5 in the ratio 11:1 in favour of
the six-membered acetonide 2, in a total yield of 85%.3,6

Later, this reaction series was used in this laboratory for the
synthesis of (+)-disparlure7 and the C17–C21 fragment of laulima-
lide.8 In the course of this study we reproduced the acetonide 2
synthesis many times and, in some cases, the content of undesired
acetal 5 was as high as 15%. In view of this fact, and in connection
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with the demonstrated synthetic potential of building block 2,3b,7,8

and the anticipated necessity for the synthesis of similar deriva-
tives (see below), we have attempted to improve the yield and reg-
ioselectivity of the formation of acetonide 2. These investigations
were performed using racemic triol 4.3a

Investigation of the influence of the reaction time on the ratio of
isomeric acetonides 2 and 5 (determined by 1H NMR6) showed that
immediately after complete or almost complete consumption of
triol 4 (as monitored by TLC) the ratio of 2 and 5 was equal to
11:1. However, if the reaction mixture was stirred for an additional
72 h, the ratio of isomers decreased to 3:1 in favour of the six-
membered isopropylidene acetal 2 and did not change further.
Thus, the ratio 3:1 corresponds to the thermodynamic equilibrium
state.
4 2 5

Scheme 1.
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The use of 2,2-dimethoxypropane (DMP)9 or isopropenyl methyl
ether10 in acetone in the presence of pyridinium p-toluenesulfonate
(PPTS) to obtain the isopropylidene acetal from 4 was found to pro-
vide a rapid and quantitative formation of acetonide 2, with a 2:5
isomeric ratio of 25:1 (Scheme 2).11 This can be explained by the
formation of a less reactive carbocation intermediate (a 1-meth-
oxy-1-methylethyl cation) in contrast to the 1-hydroxy-1-methyl-
ethyl cation formed in the case of the acetone/CuSO4/PPTS system.

Since we intended to apply the cyclopropanol approach2 to (S)-
2-hydroxybutyrolactone1 which was to be used for the synthesis of
epothilones and other natural compounds, it appeared of interest
to study isopropylidene acetal formation from triol 612 (Scheme
3). The latter can be prepared by cyclopropanation of lactone 713

with subsequent removal of the THP-protecting group from the
product 8 obtained.14 The acetalization regioselectivity for triol 6
was found to be similar to that for compound 4. Thus, using ace-
tone/CuSO4/PPTS led to the formation of compound 9, which con-
tained about 10% of the isomeric five-membered acetonide 10,
while the use of 2,2-dimethoxypropane or isopropenyl methyl
ether in acetone in the presence of PPTS gave isomeric compounds
9 and 10 in a ratio of about 100:1.15,16

It is worth noting, however, that keeping the reaction mixture
at room temperature for an additional 72 h, or heating it under re-
flux for three hours, led to the formation of a thermodynamic mix-
ture of 9 and 10 in a ratio of 1:2 in favour of the five-membered
acetonide 10. This observation was interesting since it allows com-
pound 10 to be synthesized in pure form. Indeed, we have found
that it is possible to obtain almost pure acetonide 10 via a one-
pot partial removal of the isopropylidene acetal-protecting group
from the thermodynamic mixture of acetonides 9 and 10 at low
temperature.17 Thus, triol 6 can be transformed into either the
six-membered acetonide 9 or the corresponding five-membered
derivative 10. The latter can be prepared in acceptable yield by ace-
talization of triol 6 under thermodynamically controlled conditions
followed by one-pot partial deacetalization at low temperature.
This observation is in accordance with the known more rapid
deprotection of six-membered acetonides.18
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The triols 6 and 4 can be considered as the respective mono-
and bis-cyclopropane congeners of butane-1,2,4-triol (11).19 The
synthesis of five-membered acetonide 12 from the latter (Scheme
4) was studied in detail as compound 12 can serve as a convenient
intermediate in organic synthesis.1 Thus, according to the litera-
ture,5 acetalization of butane-1,2,4-triol (11) initially gives a ki-
netic mixture of acetonides 12 and 13 in a ratio of 2:1, while on
subsequent heating of the reaction mixture under reflux for several
hours the ratio of 12:13 changes to 9:1 in favour of the five-mem-
bered derivative 12.5 This corresponds to the thermodynamic equi-
librium state. The isomeric acetonides 12 and 13 could not be
separated chromatographically.5a,b,e Separation of 12 from 13 is
possible by recrystallization of the corresponding 3,5-dini-
trobenzoates.5b,e However, this method is time consuming (three
recrystallizations) and the yield of the target acetonide 12 is poor
(about 30%). Alternatively, pure acetonide 12 could be synthesized
from malic acid in a more complicated way in comparison with
acetalization of commercially available butane-1,2,4-triol.20

We supposed that the procedure employed earlier for the puri-
fication of 10 involving partial removal of the isopropylidene ace-
tal-protecting group at low temperature could also be applied to
purify derivative 12. Indeed, acetalization of triol 11 using 2,2-
dimethoxypropane or isopropenyl methyl ether in acetone, fol-
lowed by heating under reflux for four hours and then one-pot par-
tial deprotection at low temperature, gave practically pure 12 (the
content of the corresponding six-membered derivative 13 was less
than 1%).21,22

Thus, the advantages of 2,2-dimethoxypropane or isopropenyl
methyl ether as reagents over the acetone/CuSO4/PPTS system for
the acetalization of cyclopropane-containing congeners of bu-
tane-1,2,4-triol and the applicability of partial deacetalization for
the purification of five-membered acetonides have been demon-
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strated.23 The homochiral forms of the intermediates prepared in
this study are intended to be used for the synthesis of natural
products.
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